文章摘要
张树义,聂辉,张芯语.强增生型随机变分包含解的迭代逼近[J].西南民族大学自然科学版,2020,46(1):54-65
强增生型随机变分包含解的迭代逼近
Iterative Approximations of Solutions for Random Variational Inclusions with Stongly Accretive Type Mappings
投稿时间:2019-11-19  修订日期:2019-12-24
中文关键词: 随机变分包含, 可测函数, 强增生映象, 随机Noor迭代序列
英文关键词: random variational inclusion, measurable function, stongly accretive mappings, random Noor iterative sequences
基金项目:国家自然科学基金项目(面上项目)
作者单位E-mail
张树义 渤海大学数理学院 jzzhangshuyi@126.com 
聂辉   
张芯语   
摘要点击次数: 121
全文下载次数: 131
中文摘要:
      在没有任何有界的条件下, 在可分的自反Banach空间中研究一类 强增生型随机变分包含解的带混合误差的随机Noor迭代序列收敛性问题, 在适当的条件下, 建立了随机变分包含解的随机Noor迭代序列强收敛性定理,从而推广和改进了有关文献中的相应结果.
英文摘要:
      In this paper, the convergence problem of random Noor iterative sequences with mixed errors for random variational inclusion with stongly accretive type mappings is studied in separable reflexive Banach spaces without any boundedness. Under suitable conditions, the strong convergence theorem of random Noor iterative sequences of solutions for random variational inclusion is established, which extend and improve the corresponding results of some reference.
查看全文   查看/发表评论  下载PDF阅读器
关闭